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We have selected a few varieties of different datasets, none of them was originally de-

signed for the purpose for the border ownership assignments. We use ground truth 

sets re-generated from original datasets to train and test TcNet.  

 

1. FlyingChair Dataset 

For the FlyingChairs dataset, we selected 1390 different chair-types from the original 

FlyingChairs dataset [19], each of which had 62 different orientations. We used 38 dif-

ferent images randomly downloaded from the internet for image backgrounds. Each 

image of the training set (resolution 512x1024) was generated by randomly selecting a 

portion of one of the randomly-selected background images and adding a random num-

ber (between 1-8) of randomly-selected chair types with random orientation at random 

positions.  The order of the chairs was recorded, allowing accurate determination of 

border ownership. Ground truth contour maps and border-ownership maps were gener-

ated accordingly (Fig. S1). We generated 10000 images for the training set, 1000 im-

ages for the validation set, and 1000 images for the test set. The dataset has one category 

of ‘chairs’, so no category channel is included. 

 

 

Fig.S2 demonstrates a sample inferred result from trained TcNet and its ground truth 

as comparison. A 2-branch TcNet was trained on the dataset. The 1st row in Table 1 

shows the inference evaluation statistics for FlyingChair dataset. 
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2. Synscapes Dataset  

The Synscapes dataset from [17] is a computer-generated synthetic street scene da-

taset; we used the first 15000 images from the original dataset (original resolution 

720x1440) for training, each of which was split into left and right halves such that the 

total number of images in the training set was 30000 (resolution 704x896). We then 

selected 1000 separate images from the original dataset for validation, center-crop-

ping each to the same resolution (704x896). For testing, we used the remaining 4000 

images from the original dataset, center-cropping each to a resolution of 704x1408. 

We defined three categories: ‘person’ (including people on bicycles), ‘vehicle’ (in-

cluding cars, buses, and trains), and ‘traffic sign and block’. The depth information 

from the original dataset was used to determine the occluding order of overlapping 

objects, i.e., border ownership.   

 

Fig. S3 demonstrates the Synscapes dataset and sample ground truth and inference re-

sults of border-ownership coding together with 3 categories. A 5-branch TcNet with 3 

category channels was trained on the re-generated dataset; 5-branch (1+1+3) being 1 

enforcement branch, 1 border-ownership branch, and 3 category branches. The 2nd 

row in Table 1 shows the inference evaluation statistics for Synscapes dataset includ-

ing border-ownership and 3 selected category channels.  

 

3. Plant Dataset 

The plant dataset was from [18]; it has one category of ‘leaf’, so no category-channel 

included. The dataset was chosen to see how occluding contour and border-ownership 

coding works for conceptually separated leaves of a plant (‘conceptual’ or ‘virtual’ 

does not actually or physically exist but exist virtually in brain imagination as visual 

concept); and it is worth mentioning that an interesting dataset expansion method was 

used on this small footprint original dataset. For the Plant dataset, we selected the Ar-

abidopsis set from the Plant Phenotyping Dataset [18] (128 original ground truth in-

cluding image and leaf instance label, but no depth or other clues for occluding or-

ders). Due to the limited number of images, we generated a training set using the 

leaves from the 128 images (1938 leaves in total). For each generated image, the 

background was cropped from a few images from the original dataset and tile-packed, 

and a random number of leaves (between 4-15) was randomly positioned around the 

center of the image. The order of the leaves was recorded, allowing accurate determi-

nation of border ownership. Examples of generated data are shown in Fig. S4. We 

generated 5000 images for the training set and 500 images for the validation set. 
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Fig. S5. shows the inferred results of two samples after 2-branch TcNet was trained 

with the random-leaf training set. It was observed that the leaves were not separated 

conceptually, as no top-down guidance exists, suggesting that conceptual or virtual 

boundary with no fixed expectation (leaves were part of plant not separately ‘ex-

pected’) may need active top-down guidance for conceptual separation. 

 

4. Face Dataset  

We selected the Face dataset because face is one of limited number of category-selec-

tive targets in human or mammal vision system [23, 24]; knowing the behavior of TcNet 

on face dataset is of great interest. For the Face dataset, the original CelebAMask-HQ 

dataset [6] contained 30000 ground truth face images (resolution 512x512) with differ-

ent face ‘components’ (eyes, eyebrows, lips, nose, and so on), which were split into 

train (25000), validation (2500) and test (2500) sets and resolution was kept the same. 

We defined 4 object categories: eyebrows, eyes, lips, and nose. the upper contour of a 

nose was removed as it is not a real object boundary.  

 

Fig. S6. demonstrates samples of our re-generated Face dataset ground truth and in-

ferred results from trained 6-branch TcNet, including border-ownership and 4 differ-

ent category channels; The 3rd row of Table 1 shows the inference evaluation statistics 

of Face dataset. It was observed that conceptual contours of blocked eyebrows or lips 

were detected in some cases, suggesting that conceptual or virtual boundary with 

fixed expectation (blocked eyebrows or lips was ‘expected’) may not need top-down 

guidance.   
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Fig. S1. Sample Training sets of 2-channel border ownership coding and contours for 

FlyingChair Dataset. Each ground truth set includes an image (top row, which includes random 

number (between 1 to 8) of randomly selected chairs randomly positioned on a randomly selected 

background image), a 1-channel map of occluding contours (middle row) and a 2-channel map 

of border ownership coding (bottom row). 
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Fig. S2. Example border ownership coding inference results for FlyingChair dataset. 

Top: input testing image; Middle: ground truth border ownership map; Bottom: inferred border 

ownership map from the output of a trained 2-branch TcNet. 
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Fig. S3 Example border ownership coding and category-selective inference results for 

Synscapes dataset. 1st Row: 2-channel border ownership ground truth for 3 categories (‘person’, 

‘vehicle’ and ‘traffic signs/blocks’) overlayed over input images; 2nd Row: inferred 2-channel 

and 3-category border-ownership map overlayed over input images; 3rd Row: ‘person’ category 

border-ownership map; 4th Row: ‘vehicle’ category border-ownership map; 5th Row: ‘traffic 

signs/blocks’ category border-ownership map. 
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Fig. S4. Example ground truth data for Plant dataset. Top row: example generated images 

with a random number of leaves (between 4-15) randomly positioned around the center region of 
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images; Middle row: occluding contours of leaves; Bottom row: 2-channel border-ownership 

map of the leaves. 

 

 
Fig. S5. Example border ownership inference results for Plant dataset. Top row: input 

image overlayed with 2-channel inferred border-ownership map; Bottom row: 2-channel in-

ferred border-ownership map. 
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Fig. S6. Example ground truth and inferred results of border-ownership and category 

maps for Face dataset. Four categories are selected in the example (‘eyebrow’, ‘eye’, ‘lips’, and 

‘partial nose’). 1st and 3rd columns are ground truth, and 2nd and 4th columns are inferred results 

from the output of a trained 6-branch TcNet. 1st row: 2-channel border-ownership map overlayed 

over images; 2nd row: eyebrow channel; 3rd row: eye channel; 4th row: lip channel; 5th row: nose 

channel. 
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Fig. S7. Examples of high-accuracy determination of object contours for Face dataset. 

Red-colored inference contour and yellow-colored ground truth contour are overlayed over input 

images (grayscale version of original color images). Visual inspection suggests that inferred con-

tours are more accurate than ground truth contours. 
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Fig. S8. Example failure cases for Face dataset. Red-colored inference contour and yellow-

colored ground truth contour are overlayed over input images (grayscale version of original color 

images). Sample failure cases: profile face, no eyebrow, beard. 
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Fig. S9. Examples of inferred conceptual contours. Red-colored inference contour and yel-

low-colored ground truth contour are overlayed over input images (grayscale version of original 

color images). Some of the contours should be blocked by hands (bottom right) or hairs (other 

three).  
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